MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiview monocular depth estimation using unsupervised learning methods

Author(s)
Chan, Kevin S. (Kevin Sao Wei)
Thumbnail
DownloadFull printable version (6.195Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Jonathan P. How.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Existing learned methods for monocular depth estimation use only a single view of scene for depth evaluation, so they inherently overt to their training scenes and cannot generalize well to new datasets. This thesis presents a neural network for multiview monocular depth estimation. Teaching a network to estimate depth via structure from motion allows it to generalize better to new environments with unfamiliar objects. This thesis extends recent work in unsupervised methods for single-view monocular depth estimation and uses the reconstruction losses for training posed in those works. Models and baseline models were evaluated on a variety of datasets and results indicate that indicate multiview models generalize across datasets better than previous work. This work is unique in that it emphasizes cross domain performance and ability to generalize more so than performance on the training set.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 50-51).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119753
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.