MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Natural language processing for precision clinical diagnostics and treatment

Author(s)
Chien, Isabel
Thumbnail
DownloadFull printable version (2.176Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Manolis Kellis.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I focus upon application of natural language processing to clinical diagnostics and treatment within the palliative care and serious illness field. I explore a variety of natural language processing methods, including deep learning, rule-based, and classic machine learning, and applied to the identication of documentation reflecting advanced care planning measures, serious illnesses, and serious illness symptoms. I introduce two tools that can be used to analyze clinical notes from electronic health records: ClinicalRegex, a regular expression interface, and PyCCI, an a clinical text annotation tool. Additionally, I discuss a palliative care-focused research project in which I apply machine learning natural language processing methods to identifying clinical documentation in the palliative care and serious illness field. Advance care planning, which includes clarifying and documenting goals of care and preferences for future care, is essential for achieving end-of-life care that is consistent with the preferences of dying patients and their families. Physicians document their communication about these preferences as unstructured free text in clinical notes; as a result, routine assessment of this quality indicator is time consuming and costly. Integrating goals of care conversations and advance care planning into decision-making about palliative surgery have been shown to result in less invasive care near the time of death and improve clinical outcomes for both the patient and surviving family members. Natural language processing methods offer an efficient and scalable way to improve the visibility of documented serious illness conversations within electronic health record data, helping to better quality of care.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 61-65).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119754
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.