MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel transport regimes in graphene

Author(s)
Kong, Jian Feng
Thumbnail
DownloadFull printable version (11.19Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Leonid Levitov.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Transport phenomena in solids -- such as energy and charge flows in response to external fields -- is a subject of fundamental interest for solid state physics. Carrier transport exhibits a wide variety of intriguing and potentially useful behaviors arising due to a rich and complex interplay between electron-disorder, electron-electron, and electron-phonon interactions. Graphene, a newly discovered carbon one-atom-thick material, has unique transport characteristics, some of which are already well understood, whereas some are being under investigation or are waiting to be discovered. The two-dimensional character and exceptional cleanness of graphene, as well as gate tunability of the carrier density and electron-electron interactions, make graphene an excellent platform to study a range of new transport regimes, such as quantum-coherent ballistic transport, electron hydrodynamics and energy dissipation at the atomic scale. We will study ballistic transport in the context of electronic lensing. We will also demonstrate that electron-electron scattering alters ballistic transport in a dramatic way, giving rise to hole backflows and "memory effects", and leading to experimental signatures such as negative non-local resistance. Upon further increase of the electron-electron interaction strength, the system enters the hydrodynamic regime, where a host of new phenomena can emerge. We also show that the electron-disorder interactions have important implications for energy transport, with energy dissipation occurring predominantly at atomic-scale defects. In this thesis, we will provide a detailed discussion of these topics and their connection to the ongoing experiments.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 121-130).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119930
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.