MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Models of entrainment of human walking

Author(s)
Rigobon, Daniel E
Thumbnail
DownloadFull printable version (3.119Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Neville Hogan.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Stable human locomotion may be described as a non-linear limit cycle oscillator. This claim has been supported through the observation of dynamic entrainment and phase-locking to external mechanical perturbations applied at the ankle. Simple models have been developed in attempts to understand these behaviors, but have been unsuccessful at replicating experimental studies. In this manuscript, an energy-based controller was implemented on a single degree-of-freedom model, adjusting its leading leg angle at heel strike and consequently the energy dissipation of the model. Stochasticity was applied to the controller to simulate the variability which has been observed and quantified in walking. The results indicate that energy control may be responsible for entrainment in human walking, but a revised model may be required to match the experimental coefficients of variation in step duration and velocity.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 39-40).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119940
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Bachelor's degree
  • Mechanical Engineering - Bachelor's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.