Show simple item record

dc.contributor.advisorPaul L. Schechter.en_US
dc.contributor.authorWeisenbach, Lukeen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Physics.en_US
dc.date.accessioned2019-02-05T15:57:31Z
dc.date.available2019-02-05T15:57:31Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/120203
dc.descriptionThesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 79-80).en_US
dc.description.abstractThe study of gravitational micro-lensing at high optical depth has only rarely involved the close examination of the individual actual micro-images that arise as a result of the phenomenon. We discuss methods that refine on previous work done in the search for micro-images, which have been largely ignored in favor of other methods to study micro-lensing. With the help of magnification maps generated by Herr Prof. Dr. Joachim Wambsganss, we ran simulations that track positions and magnifications of micro-minima as functions of source position. We discuss the breakdown of a commonly used approximation for magnifications near fold caustics. Our results show that the approximation is noticeably broken at a caustic strength-scaled distance of 0.1. The relevance of this breakdown to work done by other authors is briefly examined. We then then discuss a few new results for the statistics of micro-images, deriving a formula for the mean micro-minimum magnification. We present a method for exactly calculating the caustic networks of micro-lensed systems, and calculate probability distributions for the caustic strength for two sets of parameters of interest. We present the creation of videos of the micro-lensing affect for pedagogical purposes. Finally, we briefly examine micro-lensing near macro-caustics and study the motion of micro-images as a point source crosses a macro-caustic.en_US
dc.description.statementofresponsibilityby Luke Weisenbach.en_US
dc.format.extent80 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleMicro-images of macro-lensed objectsen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc1082845248en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record