dc.contributor.advisor | Paul L. Schechter. | en_US |
dc.contributor.author | Weisenbach, Luke | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Physics. | en_US |
dc.date.accessioned | 2019-02-05T15:57:31Z | |
dc.date.available | 2019-02-05T15:57:31Z | |
dc.date.copyright | 2018 | en_US |
dc.date.issued | 2018 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/120203 | |
dc.description | Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2018. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 79-80). | en_US |
dc.description.abstract | The study of gravitational micro-lensing at high optical depth has only rarely involved the close examination of the individual actual micro-images that arise as a result of the phenomenon. We discuss methods that refine on previous work done in the search for micro-images, which have been largely ignored in favor of other methods to study micro-lensing. With the help of magnification maps generated by Herr Prof. Dr. Joachim Wambsganss, we ran simulations that track positions and magnifications of micro-minima as functions of source position. We discuss the breakdown of a commonly used approximation for magnifications near fold caustics. Our results show that the approximation is noticeably broken at a caustic strength-scaled distance of 0.1. The relevance of this breakdown to work done by other authors is briefly examined. We then then discuss a few new results for the statistics of micro-images, deriving a formula for the mean micro-minimum magnification. We present a method for exactly calculating the caustic networks of micro-lensed systems, and calculate probability distributions for the caustic strength for two sets of parameters of interest. We present the creation of videos of the micro-lensing affect for pedagogical purposes. Finally, we briefly examine micro-lensing near macro-caustics and study the motion of micro-images as a point source crosses a macro-caustic. | en_US |
dc.description.statementofresponsibility | by Luke Weisenbach. | en_US |
dc.format.extent | 80 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Physics. | en_US |
dc.title | Micro-images of macro-lensed objects | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.B. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | |
dc.identifier.oclc | 1082845248 | en_US |