Show simple item record

dc.contributor.advisorRetsef Levi.en_US
dc.contributor.authorVanden Berg, Andrew Men_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2019-02-05T15:59:03Z
dc.date.available2019-02-05T15:59:03Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/120223
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 99-100).en_US
dc.description.abstractCongestion, overcrowding, and increasing patient wait times are major challenges that many large, academic centers currently face. To address these challenges, hospitals must effectively utilize available beds through proper strategic bed allocation and robust operational day-to-day bed assignment policies. Since patient daily demand for beds is highly variable, it is frequent that the physical capacity allocated to a given clinical service is not sufficient to accommodate all of the patients who belong to that service. This situation could lead to extensive wait time of patients in various locations in the hospital (e.g., the emergency department), as well as clinically and operationally undesirable misplacements of patients in hospital floors/beds that are managed by other clinical services than the ones to which the patients belong. In this thesis, we develop an optimization-simulation framework to optimize the bed allocation at Mass General Hospital. Detailed, data-driven simulation suggests that the newly proposed bed allocation would lead to significant reduction in patient intra-day wait time in the emergency department and other hospital locations, as well as a major reduction in the misplacements of patients in the Medicine service, which is the largest service in the hospital. We employ a two-pronged approach. First, we developed a detailed simulation setting of the entire hospital that could be used to assess the effectiveness of day-to-day operational bed assignment policies given a specific bed allocation. However, the simulation does not allow tractable optimization that seeks to find the best bed allocation among all possible allocations. This motivates the development of a network-flow/network design inspired mixed integer program that approximates the operational performance of bed allocations and allows us to effectively search for approximately the best allocation. The mixed integer program can be solved via a scenario sampling approach to provide candidate bed allocations. These are then tested and evaluated via the simulation setting. These tools facilitate expert discussions on how to modify the existing bed allocation at MGH to improve the day-to-day performance of the bed assignment process.en_US
dc.description.statementofresponsibilityby Andrew M. Vanden Berg.en_US
dc.format.extent100 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleOptimization-simulation framework to optimize hospital bed allocation in academic medical centersen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1082870477en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record