MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time trajectory optimization for excavators by power maximization

Author(s)
Sotiropoulos, Filippos Edward
Thumbnail
DownloadFull printable version (3.688Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Harry H. Asada.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this work an algorithm for controlling the motion of an autonomous excavator arm during excavation is presented. To deal with the challenge, posed by modeling and planning trajectories through soil, a model-free method is proposed which aims at maximally harnessing the capabilities of the excavator by matching its internal characteristics to those of the environment. By maximizing the power output of specific actuators the machine is able to strike a balance between disadvantageous operating conditions where it is either getting stuck in the soil or simply not utilizing its full potential to move soil towards task oriented goals. The real-time optimization, which used methods from extremum seeking control, was implemented in simulation and then on a small scale simulation rig which validated the method. It was shown that power maximization as a strategy of trajectory adaptation for excavation was both well-grounded and feasible.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 45-46).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120226
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.