MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probabilistic motion planning and optimization incorporating chance constraints

Author(s)
Dai, Siyu(Scientist in mechanical engineering) Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (17.50Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Brian C. Williams.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
For high-dimensional robots, motion planning is still a challenging problem, especially for manipulators mounted to underwater vehicles or human support robots where uncertainties and risks of plan failure can have severe impact. However, existing risk-aware planners mostly focus on low-dimensional planning tasks, meanwhile planners that can account for uncertainties and react fast in high degree-of-freedom (DOF) robot planning tasks are lacking. In this thesis, a risk-aware motion planning and execution system called Probabilistic Chekov (p-Chekov) is introduced, which includes a deterministic stage and a risk-aware stage. A systematic set of experiments on existing motion planners as well as p-Chekov is also presented. The deterministic stage of p-Chekov leverages the recent advances in obstacle-aware trajectory optimization to improve the original tube-based-roadmap Chekov planner. Through experiments in 4 common application scenarios with 5000 test cases each, we show that using sampling-based planners alone on high DOF robots can not achieve a high enough reaction speed, whereas the popular trajectory optimizer TrajOpt with naive straight-line seed trajectories has very high collision rate despite its high planning speed. To the best of our knowledge, this is the first work that presents such a systematic and comprehensive evaluation of state-of-the-art motion planners, which are based on a significant amount of experiments. We then combine different stand-alone planners with trajectory optimization. The results show that the deterministic planning part of p-Chekov, which combines a roadmap approach that caches the all pair shortest paths solutions and an online obstacle-aware trajectory optimizer, provides superior performance over other standard sampling-based planners' combinations. Simulation results show that, in typical real-life applications, this "roadmap + TrajOpt" approach takes about 1 s to plan and the failure rate of its solutions is under 1%. The risk-aware stage of p-Chekov accounts for chance constraints through state probability distribution and collision probability estimation. Based on the deterministic Chekov planner, p-Chekov incorporates a linear-quadratic Gaussian motion planning (LQG-MP) approach into robot state probability distribution estimation, applies quadrature-sampling theories to collision risk estimation, and adapts risk allocation approaches for chance constraint satisfaction. It overcomes existing risk-aware planners' limitation in real-time motion planning tasks with high-DOF robots in 3- dimensional non-convex environments. The experimental results in this thesis show that this new risk-aware motion planning and execution system can effectively reduce collision risk and satisfy chance constraints in typical real-world planning scenarios for high-DOF robots. This thesis makes the following three main contributions: (1) a systematic evaluation of several state-of-the-art motion planners in realistic planning scenarios, including popular sampling-based motion planners and trajectory optimization type motion planners, (2) the establishment of a "roadmap + TrajOpt" deterministic motion planning system that shows superior performance in many practical planning tasks in terms of solution feasibility, optimality and reaction time, and (3) the development of a risk-aware motion planning and execution system that can handle high-DOF robotic planning tasks in 3-dimensional non-convex environments.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 201-208).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120230
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.