MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal transport at the nanoscale : from fourier diffusion to phonon hydrodynamics

Author(s)
Huberman, Samuel Cole
Thumbnail
DownloadFull printable version (19.32Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Gang Chen.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
From the global pursuit of clean and efficient sources of energy to the challenges presented by the high power densities in the semiconductor industry to the problem of decoherence in quantum systems, thermal processes are ubiquitous across all scales of space and time. Work done in the last decade has led to a number of experimental and theoretical developments that have enabled scientists and engineers to construct an accurate picture of thermal transport at small length and time scales. In this work, we employ and contribute to this modern toolset by testing and pushing the limits of our understanding. First, we experimentally examine the effects of domain walls and crystal structure in ferroelectric thin films on thermal transport. We move on to study the effect of crystal structure and defects in oxide thin films, in which we demonstrate a reversible process that can tune thermal conductivity across one order of magnitude. Secondly, we experimentally and theoretically examine deviations from the diffusive regime of thermal transport in SiGe alloys, thereby extending current theory and experiment to the study of size effects in thermal transport to opaque materials. Finally, we go beyond the single mode approximation to the Boltzmann transport equation and develop a formalism to study size effects and hydrodynamic phenomena by solving the full scattering matrix version of the linearized Boltzmann transport equation. Using this formalism as a guide, we report the experimental observation of second sound in graphite.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 145-159).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120252
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.