Show simple item record

dc.contributor.advisorVladan Vuletić.en_US
dc.contributor.authorBraverman, Borisen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Physics.en_US
dc.date.accessioned2019-02-14T15:21:28Z
dc.date.available2019-02-14T15:21:28Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/120364
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 313-328).en_US
dc.description.abstractIn this thesis, I present the realization of a system applying the tools of cavity quantum electrodynamics to an atomic optical lattice clock. We design and implement a unique experimental cavity structure, with a small radius of curvature mirror on one side and a large mirror on the other side. With this structure, we are able to probe ytterbium-171 atoms in both the weak and strong coupling regimes of cavity quantum electrodynamics. This asymmetric micromirror structure simultaneously offers strong light-atom coupling, mechanical robustness, and excellent access to a large cavity volume. We develop a simple but accurate model for strong light-atom interactions in our system, which allows us to predict the performance of both cavity-assisted quantum non demolition measurements of the atomic state, and the back-action of the probing light onto the atomic state. We find theoretically, and confirm experimentally, that probing the atom-cavity system with two frequencies at the vacuum Rabi peaks of a system with strong collective light-atom coupling generates the largest possible entanglement between the probing light and the atomic state. With this scheme, we demonstrate atomic number measurements within a factor of 2 of the quantum Fisher information limit. By using the quantum back-action of the probing light on the atomic ensemble, we perform squeezing by cavity feedback. We produce states with -11±1 dB of variance squeezing and 14±1 dB of anti squeezing. Using theoretical simulations, we show that states with near-unitary squeezing offer significant advantages for improving atomic clocks compared to previous work. The ability to load large atomic ensembles in the strong coupling regime in our system offers several routes to the generation of highly entangled non-Gaussian quantum states. Such states can be produced by heralded measurements, or by global atom-atom interactions based on unitary spin squeezing. Altogether, we realize a system of unprecedented versatility and great potential for performing a large variety of hybrid atomic clock and cavity QED experiments.en_US
dc.description.statementofresponsibilityby Boris Braverman.en_US
dc.format.extent328 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleCavity quantum electrodynamics with ensembles of ytterbium-171en_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc1083671419en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record