Show simple item record

dc.contributor.advisorAngela M. Belcher.en_US
dc.contributor.authorRansil, Alan Patrick Adamsen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2019-02-14T15:47:26Z
dc.date.available2019-02-14T15:47:26Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/120391
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 120-153).en_US
dc.description.abstractBattery research has historically focused on improving the properties of the active materials that directly store energy. This research has resulted in active materials with higher specific capacity, increased the voltage of batteries in order to store more energy per electron, and lead to the development of electrolytes and binders compatible with high-performance active materials. However, Lithium-Ion Batteries (LIB) are nearing the limits of energy density achievable using a traditional battery design. Structural batteries are a fundamentally distinct route to optimize device performance, aiming to replace structural materials such as metals, plastics, and composites with multifunctional energy-storing materials. By increasing the device mass fraction that is devoted to energy storage, this strategy could more than double the battery life of electronic devices without requiring improved active materials. In this thesis, I show that rigid, load-bearing electrodes suitable for structural batteries can be fabricated using a novel silicate binder. This binder .can be used to distribute load both within layers and throughout the battery by adhering adjacent battery layers. This innovation turns the entire battery stack into a novel monolithic engineering ceramic referred to as a Structural Ceramic Battery (SCB). Unlike previously published binders, this material does not soften with the introduction of electrolyte, it promotes charge transport within the electrode, and it is compatible with a range of active materials employed in batteries today. This thesis furthermore outlines versatile manufacturing methods making it possible to produce SCBs with a wide variety of shapes and form factors amenable to large-scale production. It is envisioned that this SCB architecture will be used to improve the energy density of both ground-based and flying electric vehicles, and that as improved active material chemistries are discovered they will be dropped in to this architecture in order to promote future increases in vehicle-level energy density.en_US
dc.description.statementofresponsibilityby Alan Ransil.en_US
dc.format.extent153 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleA bio-inspired approach to increase device-level energy densityen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc1083671544en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record