Show simple item record

dc.contributor.advisorAmos Winter.en_US
dc.contributor.authorBuchman, Michael Rafaelen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2019-02-14T15:47:46Z
dc.date.available2019-02-14T15:47:46Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/120395
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 151-156).en_US
dc.description.abstractTurbocharging can provide a cost-effective means for increasing the power output and fuel economy of an internal combustion engine. It is commonly used on multi-cylinder engines, but not on commercial single-cylinder engines due to the phase mismatch between the exhaust stroke (when the turbocharger is powered) and the intake stroke (when the engine requires the compressed air). This work explores overcoming the phase mismatch problem by adding an air capacitor: a volume added in series with the intake manifold between the turbocharger compressor and the engine intake. The function of the air capacitor is to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. This research focuses on demonstrating the feasibility of using an air capacitor to enable turbocharging single cylinder internal combustion engines. An analytical model of the system was created from first principles, which showed that the air capacitor turbocharging method could increase power output by up to 40% without heat transfer and up to 70% with heat transfer elements included in the intake manifold (such as an intercooler). An initial, proof-of-concept experiment was created using a generator as a dynamometer. With an air capacitor volume seven times the engine capacity, this setup was able to produce 29% more power compared to the same engine naturally aspirated. A numerical model was developed in Ricardo Wave to predict the performance of turbocharged single cylinder engines with air capacitors under different conditions. An experimental engine with accompanying dynamometer was constructed to demonstrate the effects of manifold sizing on engine performance and to experimentally validate the model. The experiment showed that the model was able to predict power output with an accuracy of 8% of peak power, fuel consumption within 7% error, air mass flow rates with 10% error, and manifold pressures within 7% error. The model was then combined with a simulated annealing optimization scheme in Matlab in order to conceptualize designs for the geometry and timings of single-cylinder turbocharged engines intended for different commercial applications. The optimization showed that adding an air capacitor and turbocharger to a 0.44L engine, with slight modifications to the valve and injector timings, could increase power by 88% compared to natural aspiration. By also modifying the bore and stroke, the turbocharged engine with an air capacitor could reduce fuel consumption by 8% compared to a naturally aspirated engine with equivalent peak power output.en_US
dc.description.statementofresponsibilityby Michael Buchman.en_US
dc.format.extent156 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleCharacterizing and designing engine manifolds for single-cylinder engine turbochargingen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc1083761395en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record