MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

p-Channel gallium nitride transistor on Si substrate

Author(s)
Chowdhury, Nadim
Thumbnail
DownloadFull printable version (13.76Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Tomás Palacios.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Gallium Nitride, a wide bandgap (3.4 eV) semiconductor, has outstanding attributes, such as, high breakdown electric field, high electron mobility, which make it suitable for applications requiring high power and high operating frequencies. These intrinsic material properties have been the major driving force to the development of high speed and high power GaN based n-channel transistors (mostly in the form of AlGaN/GaN High Electron Mobility Transistors). However, the full potential of GaN technology cannot be reached without the existence of p-channel GaN transistors. These devices are required for efficient high side switching in the converter circuits and for GaNCMOS technology. Therefore, the aim of this work is to demonstrate a GaN-CMOS compatible p-channel transistor. A stack of MOCVD grown epitaxial layers, is chosen for this work which has both 2-dimensional electron gas (2-DEG) for n-channel transistor and 2-dimensional hole gas (2-DHG) for p-channel transistor. The epitaxial layers chosen for this work are as follows, p++ - GaN (20 nm)/p-GaN (50 nm)/UID-GaN (20 nm)/Alo.25Gao. 75N (20 nm)/UID-GaN (150 nm)/GaNBuffer (3.8 ptm)/Si (1000 [mu]m). From device fabrication point of view, the difficulty of demonstrating a high performing p-channel GaN transistor can be attributed to the high source and drain contact resistances. In this thesis, we successfully improved the contact resistances through the development of optimum fabrication process, and a record contact resistivity of 4.83 x 10-6 [Omega]2 - cm 2 to p type-GaN was demonstrated. Finally, for the first time, a recessed gate p-channel GaN transistor on Si substrate was demonstrated. Direct current measurement of our fabricated devices show excellent off-state characteristics: ION/IOFF 5 , SS= 280 mV/decade and IOFF=- nA/mm. Measured on state characteristics for 2 pm channel length devices are, Ron= 1.7 k[omega]-mm as VGS=12 V, ION=- 3 .5 mA/mm at VGS=10 V and VDs=5 V. From the current-voltage and capacitance-voltage characteristics of 100 pm channel length devices, 2-DHG density and hole C, 2 mobility were found to be 2.4 x 1012 cm 2 and 11cm2/v.s , respectively.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120405
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.