MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultrahigh-resolution, deep-penetration spectral-domain optical coherence tomography

Author(s)
Bernstein, Liane (Liane Sarah Bel)
Thumbnail
DownloadFull printable version (13.01Mb)
Alternative title
Ultrahigh-resolution, deep-penetration spectral-domain OCT
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Seok-Hyun (Andy) Yun and Roger G. Mark.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Optical coherence tomography (OCT) is a label-free optical imaging modality that allows non-invasive in-depth visualization of microscopic structures in samples. With a typical resolution of 10-15 [mu]m and a penetration of up to a few mm, OCT is widely used for medical diagnoses in fields such as ophthalmology and cardiology. However, the more common diagnostic tool in the microscopic regime of medical imaging is histology, an invasive technique requiring tissue biopsy. Its resolution can be as small as 0.2 [mu]m, allowing the visualization of subcellular structures. To help bridge this gap between OCT and histology, ultrahigh-resolution OCT systems have been developed, with resolutions on the order of 1 [mu]m. Yet their application remains limited, since they employ shorter-wavelength sources, reducing penetration in tissue. We have designed and built a spectral-domain ultrahigh-resolution, deep-penetration OCT system centered at 1290 nm with axial and lateral resolutions of 2 and 5 [mu]m, respectively. To our knowledge, this is the best axial resolution obtained for a highspeed OCT system centered this deeply in the infrared. We demonstrate imaging of the cardiac conduction system, which could eventually be used for intraoperative identification of conducting tissue. In addition, we show images of the corneo-scleral angle, which could help properly diagnose primary angle-closure glaucoma. Other potential applications are also discussed.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 73-77).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120407
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.