MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of trans / supercritical behavior of carbon dioxide on power and propulsion applications

Author(s)
Crespo Anadón, Javier
Thumbnail
DownloadFull printable version (12.99Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Zoltán S. Spakovszky.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Operating combustors at supercritical conditions has the potential of reducing NOx emissions and enabling a more compact combustor design. However, this can have an impact on the combustion dynamics, and the impact of trans-critical conditions is unknown. A reduced order model framework was developed to assess the impact of droplet evaporation time on the combustion dynamics under sub-, trans- and supercritical conditions. This framework combines an analytical one-dimensional acoustic solver with a previously developed droplet evaporation model and a heat release oscillation model based on the droplet evaporation time. This approach yields low computational cost and is useful for the identification of trends in combustion dynamics and complementing high fidelity calculations. The results were validated with analytical predictions and unsteady three-dimensional CFD calculations. The results suggest that droplets with longer evaporation times have a stabilizing effect on the combustor dynamics. The second part of the thesis investigates the condensation behavior for metastable carbon dioxide (CO₂). Using a previously established blowdown experiment with optical measurement capability, the current state-of-the-art equation of state was verified in the metastable region and demonstrated to be within 4% of the measurements. Additional Wilson line measurements were obtained near the critical point and the measurement procedure was validated using a nozzle geometry from the literature. Lastly, an attempt was made to characterize the effect of expansion rate on condensation in non-dimensional terms. A reduced frequency like parameter was introduced comparing the expansion rate with two other relevant time scales. Neither the fluid residence time nor the acoustic time based on upstream stagnation conditions collapsed the data adequately, rendering the analysis inconclusive.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2018.
 
Cataloged from PDF version of thesis. "Pages with color images contain background shading/streaking"--Disclaimer Notice page.
 
Includes bibliographical references (pages 85-88).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120430
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.