MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrated silicon photonic circuit simulation

Author(s)
Leu, Jonathan Chung
Thumbnail
DownloadFull printable version (12.59Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Michael Watts.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Integrated silicon photonics is an exciting emerging technology, utilizing the high bandwidth and high timing resolution that optics provides in many applications. To maximize the benefits of these optical-electrical systems, tight integration of the electronic and photonic components are necessary. In light of this need, we've developed a Cadence toolkit library written in VerilogA that simulates both the amplitude and phase of optical signals, as well as optical-electrical interactions. The runtime is greatly improved by simulating the optical signal relative to a reference frequency, which is chosen to be close to the frequency range of interest. We have identified a set of fundamental photonic components, and described each at the physical level, such that the characteristics of a composite device will be created organically. We show that the simulated results match analytic solutions for simple devices like resonant ring filters and more complicated devices like single sideband modulators. Adding to this toolkit library, we then discuss devices that are required for handling more special cases, such as chromatic dispersion in the waveguide, and non-ideal optoelectronic devices. Finally, we demonstrate simulations of complicated systems such as WDM links and Pound-Drever-Hall loops. This will allow designers to unify our photonic device designing and modeling environment with circuit and system level design, giving us greater insight on the trade-offs that take place between the two realms.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 97-111).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120431
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.