Show simple item record

dc.contributor.advisorChoon S. Tan, John P. Clark and Scott M. Carson.en_US
dc.contributor.authorShannon, Kevin R. (Kevin Robert)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2019-02-14T15:51:48Z
dc.date.available2019-02-14T15:51:48Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/120440
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 129-130).en_US
dc.description.abstractFlow in a one-and-a-half stage highly loaded transonic axial turbine representative of future generation turbine technology is assessed for its role in loss generation. Steady and unsteady two-dimensional and three-dimensional flow computations, complemented by simplistic control volume analyses as well as test data, provided results for establishing the quantitative level of loss from various sources. The test data has been acquired in a cascade and blowdown turbine research rig. Specifically, the overall loss determined from unsteady three-dimensional flow computations of a cooled one-and-a-half stage turbine is within 6% of that inferred from the blowdown turbine rig test data. The computed flows with different levels of flow and configuration complexities are post-processed and interrogated to allow an estimation of blade profile loss, trailing edge loss, shock loss, endwall loss, secondary flow loss, tip leakage loss, cooling injection loss, and unsteady flow loss. The dominant sources of loss are determined to be the trailing edge loss, profile loss, and tip leakage loss. The computed flows show that the flow deviation in a highly loaded transonic turbine airfoil with trailing edge shocks is negative (-2° to -4°); estimating the trailing edge loss by assuming zero flow deviation in a simple control volume approach would yield a significantly higher value. Loss arising from flow unsteadiness contributes an additional loss of about 1/6 of that in steady flow approximation; 3/4 of the flow unsteadiness induced loss occurs in the downstream vane where the flow is threaded with propagating shocks from the upstream blade and downstream shock reflections; and the remaining 1/4 is from unsteadiness in NGV wakes and shock oscillations from influence of the adjacent airfoil row. 1/5 of the overall loss in the one-and-a-half stage turbine is from the cooling and purge flows. A preliminary assessment of loss variation with turbine stage pressure ratio shows a non-monotonic trend.en_US
dc.description.statementofresponsibilityby Kevin R. Shannon.en_US
dc.format.extent130 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleLoss mechanisms in a highly loaded transonic axial turbine stageen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc1084655529en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record