MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling and designing Bc1-2 family protein interactions using high-throughput interaction data

Author(s)
Xue, Vincent
Thumbnail
DownloadFull printable version (18.51Mb)
Other Contributors
Massachusetts Institute of Technology. Computational and Systems Biology Program.
Advisor
Amy Keating.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Protein-protein interactions (PPIs) play a major role in cellular function, mediating signal processing and regulating enzymatic activity. Understanding how proteins interact is essential for predicting new binding partners and engineering new functions. Mutational analysis is one way to study the determinants of protein interaction. Traditionally, the biophysical study of protein interactions has been limited by the number of mutants that could be made and analyzed, but advances in high-throughput sequencing have enabled rapid assessment of thousands of variants. The Keating lab has developed an experimental protocol that can rank peptides based on their binding affinity for a designated receptor. This technique, called SORTCERY, takes advantage of cell sorting and deep-sequencing technologies to provide more binding data at a higher resolution than has previously been achievable. New computational methods are needed to process and analyze the high-throughput datasets. In this thesis, I show how experimental data from SORTCERY experiments can be processed, modeled, and used to design novel peptides with select specificity characteristics. I describe the computational pipeline that I developed to curate the data and regression models that I constructed from the data to relate protein sequence to binding. I applied models trained on experimental data sets to study the peptide-binding specificity landscape of the Bc1-xL, Mc1-1, and Bf1-1 anti-apoptotic proteins, and I designed novel peptides that selectively bind tightly to only one of these receptors, or to a pre-specified combination of receptors. My thesis illustrates how data-driven models combined with high-throughput binding assays provide new opportunities for rational design.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Computational and Systems Biology Program, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 153-164).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120446
Department
Massachusetts Institute of Technology. Computational and Systems Biology Program
Publisher
Massachusetts Institute of Technology
Keywords
Computational and Systems Biology Program.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.