MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating parameter optimization in locality-sensitive hashing for high-dimensional physiological waveforms

Author(s)
Chakradhar, Vineel A
Thumbnail
DownloadFull printable version (6.608Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Erik Hemberg.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We develop and evaluate a theoretical architecture to inform parameter choice for locality-sensitive hashing methods used towards identifying similarity in physiological waveform time-series data. The goal is to achieve increased probability of successful patient outcomes in emergency rooms by tackling the problem of efficient information retrieval within massive, high-dimensional medical datasets. To solve this problem, we explore the relationship between a number of data inputs and elements of locality-sensitive hashing schemes in order to drive optimal choice of parameters throughout the pipeline from raw data to locality-sensitive hashing output. We achieve significant increases in retrieval times while generally maintaining the prediction accuracy achieved by naive retrieval methodologies.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis. "The pagination listed in the Table of Contents does not correlate with actual page numbering"--Disclaimer Notice page.
 
Includes bibliographical references (pages 71-72).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120650
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.