MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical limits of graphical channel models and a semidefinite programming approach

Author(s)
Kim, Chiheon
Thumbnail
DownloadFull printable version (9.773Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Michel X. Goemans.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Community recovery is a major challenge in data science and computer science. The goal in community recovery is to find the hidden clusters from given relational data, which is often represented as a labeled hyper graph where nodes correspond to items needing to be labeled and edges correspond to observed relations between the items. We investigate the problem of exact recovery in the class of statistical models which can be expressed in terms of graphical channels. In a graphical channel model, we observe noisy measurements of the relations between k nodes while the true labeling is unknown to us, and the goal is to recover the labels correctly. This generalizes both the stochastic block models and spiked tensor models for principal component analysis, which has gained much interest over the last decade. We focus on two aspects of exact recovery: statistical limits and efficient algorithms achieving the statistic limit. For the statistical limits, we show that the achievability of exact recovery is essentially determined by whether we can recover the label of one node given other nodes labels with fairly high probability. This phenomenon was observed by Abbe et al. for generic stochastic block models, and called "local-to-global amplification". We confirm that local-to-global amplification indeed holds for generic graphical channel models, under some regularity assumptions. As a corollary, the threshold for exact recovery is explicitly determined. For algorithmic concerns, we consider two examples of graphical channel models, (i) the spiked tensor model with additive Gaussian noise, and (ii) the generalization of the stochastic block model for k-uniform hypergraphs. We propose a strategy which we call "truncate-and-relax", based on a standard semidefinite relaxation technique. We show that in these two models, the algorithm based on this strategy achieves exact recovery up to a threshold which orderwise matches the statistical threshold. We complement this by showing the limitation of the algorithm.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 205-213).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120659
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.