Show simple item record

dc.contributor.advisorEdward Boyden.en_US
dc.contributor.authorBarry, Nicholas C. (Nicholas Craig)en_US
dc.contributor.otherProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.date.accessioned2019-03-01T19:58:18Z
dc.date.available2019-03-01T19:58:18Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/120687
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 43-46).en_US
dc.description.abstractEfforts to model computation in biological neural networks require knowledge of the structure of the network, the dynamics that play across it, and a network simple enough to be tractable to our incipient analyses. The simplicity of the 302-node nervous system of the nematode C. elegans and its transparency have made it an attractive model organism in neuroscience for several decades. Indeed, Caenorhabditis elegans has long been touted as the only species for which the connectome is known, reconstructed by hand from electron micrographs. However, while the number and identity of neurons in C. elegans appears fixed across animals, the variability in the connections between them has not been sufficiently characterized by the above efforts, which examined only a handful of animals and required many years of human labor. Such a characterization, and, moreover, an ability to accurately assess shifts in these neural graphs on timescales compatible with the pace and statistical rigor of scientific research would significantly accelerate efforts to understand neural computation. This thesis lays the groundwork for the development of such a framework. The expansion microscopy tissue preparation platform provided the basis for the set of experiments described within, in which strategies for molecular annotation of C. elegans and the subsequent protocols for readout are examined.en_US
dc.description.statementofresponsibilityby Nicholas C Barry.en_US
dc.format.extent46 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectProgram in Media Arts and Sciences ()en_US
dc.titleTools for connectomics in C. elegansen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.identifier.oclc1088562553en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record