Show simple item record

dc.contributor.authorBorodin, Alexei
dc.date.accessioned2019-03-05T17:13:40Z
dc.date.available2019-03-05T17:13:40Z
dc.date.issued2016-11
dc.date.submitted2016-10
dc.identifier.issn0001-8708
dc.identifier.issn1090-2082
dc.identifier.urihttp://hdl.handle.net/1721.1/120731
dc.description.abstractThis paper is about a family of symmetric rational functions that form a one-parameter generalization of the classical Hall–Littlewood polynomials. We introduce two sets of (skew and non-skew) functions that are akin to the P and Q Hall–Littlewood polynomials. We establish (a) a combinatorial formula that represents our functions as partition functions for certain path ensembles in the square grid; (b) symmetrization formulas for non-skew functions; (c) identities of Cauchy and Pieri type; (d) explicit formulas for principal specializations; (e) two types of orthogonality relations for non-skew functions. Our construction is closely related to the half-infinite volume, finite magnon sector limit of the higher spin six-vertex (or XXZ) model, with both sets of functions representing higher spin six-vertex partition functions and/or transfer-matrices for certain domains. Keywords: Symmetric rational functionsen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1056390)en_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.AIM.2016.10.040en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleOn a family of symmetric rational functionsen_US
dc.typeArticleen_US
dc.identifier.citationBorodin, Alexei. “On a Family of Symmetric Rational Functions.” Advances in Mathematics 306 (January 2017): 973–1018 © 2016 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.mitauthorBorodin, Alexei
dc.relation.journalAdvances in Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-02-11T17:44:54Z
dspace.orderedauthorsBorodin, Alexeien_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-5238
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record