dc.contributor.author | Borodin, Alexei | |
dc.date.accessioned | 2019-03-05T17:13:40Z | |
dc.date.available | 2019-03-05T17:13:40Z | |
dc.date.issued | 2016-11 | |
dc.date.submitted | 2016-10 | |
dc.identifier.issn | 0001-8708 | |
dc.identifier.issn | 1090-2082 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/120731 | |
dc.description.abstract | This paper is about a family of symmetric rational functions that form a one-parameter generalization of the classical Hall–Littlewood polynomials. We introduce two sets of (skew and non-skew) functions that are akin to the P and Q Hall–Littlewood polynomials. We establish (a) a combinatorial formula that represents our functions as partition functions for certain path ensembles in the square grid; (b) symmetrization formulas for non-skew functions; (c) identities of Cauchy and Pieri type; (d) explicit formulas for principal specializations; (e) two types of orthogonality relations for non-skew functions. Our construction is closely related to the half-infinite volume, finite magnon sector limit of the higher spin six-vertex (or XXZ) model, with both sets of functions representing higher spin six-vertex partition functions and/or transfer-matrices for certain domains. Keywords: Symmetric rational functions | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-1056390) | en_US |
dc.publisher | Elsevier BV | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/J.AIM.2016.10.040 | en_US |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | On a family of symmetric rational functions | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Borodin, Alexei. “On a Family of Symmetric Rational Functions.” Advances in Mathematics 306 (January 2017): 973–1018 © 2016 Elsevier Inc | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.contributor.mitauthor | Borodin, Alexei | |
dc.relation.journal | Advances in Mathematics | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2019-02-11T17:44:54Z | |
dspace.orderedauthors | Borodin, Alexei | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-2913-5238 | |
mit.license | PUBLISHER_CC | en_US |