Show simple item record

dc.contributor.advisorMichale S. Fee.en_US
dc.contributor.authorMackevicius, Emily Lamberten_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences.en_US
dc.date.accessioned2019-03-11T19:04:07Z
dc.date.available2019-03-11T19:04:07Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/120871
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 159-177).en_US
dc.description.abstractSong learning circuitry is thought to operate using a unique representation of each moment within each song syllable. Distinct timestamps for each moment in the song have been observed in the premotor cortical nucleus HVC, where neurons burst in sparse sequences. However, such sparse sequences are not present in very young birds, which sing highly variable syllables of random lengths. Furthermore, young birds learn by imitating a tutor song, and it was previously unclear precisely how the experience of hearing a tutor might shape auditory, motor, and evaluation pathways in the songbird brain. My thesis presents a framework for how these pathways may assemble during early learning, using simple neural mechanisms. I start with a neural network model for how premotor sequences may grow and split. This model predicts that the sequence-generating nucleus HVC would receive rhythmically patterned training inputs. I found such a signal when I recorded neurons that project to HVC. When juvenile birds sing, these neurons burst at the beginning of each syllable, and when the birds listen to a tutor, neurons burst at the rhythm of the tutor's song. Bursts marking the beginning of every tutor syllable could seed chains of sequential activity in HVC that could be used to generate the bird's own song imitation. I next used functional calcium imaging to characterize HVC sequences before and after tutor exposure. Analysis of these datasets led us to develop a new method for unsupervised detection of neural sequences. Using this method, I was able to observe neural sequences even prior to tutor exposure. Some of these sequences could be tracked as new syllables emerged after tutor exposure, and some sequences appeared to become coupled to the new syllables. In light of my new data, I expand on previous models of song learning to form a detailed hypothesis for how simple neural processes may perform song learning from start to finish.en_US
dc.description.statementofresponsibilityby Emily Lambert Mackevicius.en_US
dc.format.extent177 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBrain and Cognitive Sciences.en_US
dc.titleBuilding a state space for song learningen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences
dc.identifier.oclc1088724077en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record