MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Supply Chain Management
  • Supply Chain Management Capstone Projects
  • View Item
  • DSpace@MIT Home
  • Supply Chain Management
  • Supply Chain Management Capstone Projects
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Demand Forecasting and Inventory Management for Spare Parts

Author(s)
Chawla, Gaurav; Miceli, Vitor
Thumbnail
DownloadChawla_Miceli_2019.pdf (2.456Mb)
Metadata
Show full item record
Abstract
Spare parts management is an essential operation in the supply chain of many companies, owing to its strategic importance in supporting equipment availability and continuity of operations. In many supply chains, the demand of spare parts is inherently more uncertain compared to traditional fast-moving products. This is due to the fact that spare parts demand is highly intermittent, mostly observed with a long period between consecutive orders, where a no demand period is followed by a period of an order signal. As spare parts are critical to the continuity of operations, companies tend to stock more inventories to mitigate the risk of irregular demand pattern. Gerber Technology, a manufacturing company that sells industrial machines and the spare parts that support them, faces challenges in its spare parts demand forecast quality and inventory management. This challenge has recently been negatively impacting the company’s inventory costs and customer service level, where the actual inventory is consistently higher than the targeted level. Meanwhile, higher inventory levels are not being translated into higher service level to its customers. In summary, the company has seen increased costs with a lower service level. Therefore, the aim of this project was to improve the demand forecast accuracy and the spare parts service level of the company while optimizing inventory costs. For this purpose, we used SKU classification for demand categorization and inventory control. With these categorizations, we then allocate the recommended demand forecasting techniques and optimize the inventory levels of the company. By following these processes, we achieved an improvement between 7% to 14% in forecasting accuracy measured by the Root Mean Squared Error (RMSE). We could also gain up to 3% improvement in service level leading to $1.3M additional revenue opportunity.
Date issued
2019
URI
https://hdl.handle.net/1721.1/121291
Keywords
Optimization, Forecasting, Fulfillment, Inventory

Collections
  • Supply Chain Management Capstone Projects

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.