Show simple item record

dc.contributor.advisorEugene A. Fitzgerald.en_US
dc.contributor.authorShah, Rushabh(Rushabh Dinesh)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2019-07-12T17:40:26Z
dc.date.available2019-07-12T17:40:26Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121594
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 87-92).en_US
dc.description.abstractSemiconductor devices based on GaAs substrates use III-V alloy systems like Inx(AlyGa₁₋y)₁₋xAs for optoelectronic devices and high frequency communication applications. Heteroepitaxial integration of such devices with Si has generated a lot of interest because it has the potential of combining the desired material properties with the low cost of the Si manufacturing platform and enabling monolithic integration with Si CMOS, creating novel integrated circuits. However, heteroepitaxial integration introduces challenges related to detrimental crystal defects like dislocations that are created in the process and require buffer layers to accommodate such defects and minimize their impact on device performance. One buffer layer scheme that is receiving widespread adoption involves the direct growth of Ge on Si. It produces a threading dislocation density ~2x10⁷ cm⁻² but this density is too high for applications like high efficiency GaAs solar cells.en_US
dc.description.abstractIn this work, we aim to study two methods that can reduce this defect density. One involves developing a similar procedure to Ge on Si growth, for growing Ge on Si₅₀Ge₅₀. We find that despite the lower lattice mismatch and availability of pre-existing mobile dislocations in this approach, the Ge film retains a high metastable strain that generates a high density of crystal defects. The second method involves the use of low x Inx(A1yGa₁₋y)₁₋xAs buffer layers that use compressive strain to encourage dislocation reactions and drive dislocations to sinks (mesa sidewalls). Filtering effects lead to a reduced threading dislocation density, the lowest measured in this study is 7x10⁶cm⁻² , but these effects do not scale with x, showing that dislocation sources are active and play an important role. These films have residual tension due to differences in coefficient of thermal expansion with Si substrates.en_US
dc.description.abstractRecombination enhanced dislocation glide effects permit direct visualization of processes that operate to relive this residual strain at room temperature, in cathodoluminescence imagining conditions. This provides a first estimate of density of dislocation sources and interaction probability between dislocations under residual strain conditions. Unexpected dark line defects were observed in cathodoluminescence imaging and the use of "overshoot layer" was demonstrated to be critical in reducing their density. Preliminary work towards processing photovoltaic cells and a layer transfer method that involves wafer bonding for reuse of buffer layers is also discussed.en_US
dc.description.statementofresponsibilityby Rushabh Shah.en_US
dc.format.extent92 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleDislocation engineering in InAlGaAs/SiGe alloy systems for heteroepitaxial integrationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.identifier.oclc1098033883en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Materials Science and Engineeringen_US
dspace.imported2019-07-12T17:40:26Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMatScien_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record