MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perturbation stability for approximate MAP inference

Author(s)
Lang, Hunter(Hunter J.)
Thumbnail
Download1098173643-MIT.pdf (3.493Mb)
Alternative title
Perturbation stability for approximate maximum a posteriori probability inference
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
David A. Sontag and Aravindan Vijayaraghavan.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The MAP inference problem in discrete graphical models has found widespread applications in machine learning and statistical physics over the past few decades. However, for many useful model classes, this combinatorial optimization problem is NP-hard to solve efficiently. Approximation algorithms, which typically come with theoretical worst-case guarantees on their approximation ratios, are commonplace. On real-world data, however, these algorithms far outperform their worst-case guarantees, often returning solutions that are extremely close to optimal. This thesis asks, and partially answers, the question: "What structure is present in real-world data that makes MAP inference easy?" We propose stability conditions under which we prove that popular approximation algorithms work provably well, and we evaluate these conditions on real-world instances.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 85-88).
 
Date issued
2018
URI
https://hdl.handle.net/1721.1/121627
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.