Show simple item record

dc.contributor.advisorKalyan Veeramachaneni.en_US
dc.contributor.authorMontanez, Andrew,M. Eng.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-07-15T20:29:31Z
dc.date.available2019-07-15T20:29:31Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121631
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 105).en_US
dc.description.abstractIn this thesis, I designed three open source Python libraries with the intention of creating a robust system that can accurately generate synthetic data. The goals of this thesis were to separate the different components in synthetic data generation into their own libraries. We identified these components as consisting of a way to transform the data, a way to model the data, and a way to recursively traverse the data set to model the relationships between the table as well as the data set itself. Once the libraries were implemented and functioning, we designed a program to run the synthetic data generation process in parallel on subsets of the original data. The goal of this program was to see if the overall modeling time could be reduced by modeling subsets in parallel and then averaging the parameters. In the end, we test how close these averaged parameters are to the original to see if this is a valid modeling technique.en_US
dc.description.statementofresponsibilityby Andrew Montanez.en_US
dc.format.extent105 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSDV : an open source library for synthetic data generationen_US
dc.title.alternativeSynthetic Data Vaulten_US
dc.title.alternativeOpen source library for synthetic data generationen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1098174866en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-07-15T20:29:27Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record