MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning contact-aware robot controllers from mixed integer optimization

Author(s)
Deits, Robin L. H.(Robin Lloyd Henderson)
Thumbnail
Download1102048289-MIT.pdf (15.05Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Russ Tedrake.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The problem of handling contact is central to the task of controlling a walking robot. Robots can only move through the world by exerting forces on their environment, and choosing where, when, and how to touch the world is the fundamental challenge of locomotion. Because the space of possible contacts is a high-dimensional mix of discrete and continuous decisions, it has historically been difficult or impossible to make complex contact decisions online at control rates. This work first presents an approach to contact planning which is able to make some guarantees of global optimality through mixed-integer programming. That method is applied successfully to a humanoid robot in laboratory conditions, but proves difficult to rely on when the robot is experiences unmodeled disturbances. To overcome those limitations, this thesis also introduces LVIS (Learning from Value Interval Sampling) a new approach to the control of walking robots which allows complex contact decisions to be made online using a cost function trained from offline trajectory optimizations. The LVIS algorithm is demonstrated on a simple cart-pole system with walls as well as a simplified bipedal robot model, and its success at allowing both models to use contact decisions to recover from external disturbances is demonstrated in simulation.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 117-128).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/121650
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.