Show simple item record

dc.contributor.advisorDaniela Rus.en_US
dc.contributor.authorGheneti, Banti Henricus.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-07-15T20:32:50Z
dc.date.available2019-07-15T20:32:50Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121672
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 105-110).en_US
dc.description.abstractAutonomous Surface Vehicles (ASV) are a highly active area of robotics with many ongoing projects in search and rescue, environmental surveying, monitoring, and beyond. There have been significant studies on ASVs in riverine, coastal, and sea environments, yet only limited research on urban waterways, one of the most busy and important water environments. This thesis presents an Urban Autonomy System that is able to meet the critical precision, real-time and other requirements that are unique to ASVs in urban waterways. LiDAR-based perception algorithms are presented to enable robust and precise obstacle avoidance and object pose estimation on the water. Additionally, operating ASVs in well-networked urban waterways creates many potential use cases for ASVs to serve as re-configurable urban infrastructure, but this necessitates developing novel multi-robot planners for urban ASV operations. Efficient sequential quadratic programming and real-time B-spline parameterized mixed-integer quadratic programming multi-ASV motion planners are presented respectively for formation changing and shapeshifting operations, enabling use cases such as ASV docking and bridge-building on water. These methods increase the potential of urban and non-urban ASVs in the field. The underlying planners in turn contribute to the motion planning and trajectory optimization toolbox for unmanned aerial vehicles (UAVs), self-driving cars, and other autonomous systems.en_US
dc.description.statementofresponsibilityby Banti Henricus Gheneti.en_US
dc.format.extent110 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleReconfigurable Autonomous Surface Vehicles : perception and trajectory optimization algorithmsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1102056749en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-07-15T20:32:47Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record