Show simple item record

dc.contributor.advisorRosalind W. Picard and Ognjen (Oggi) Rudovic.en_US
dc.contributor.authorPeterson, Kelly(Kelly Nicole)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-07-15T20:33:22Z
dc.date.available2019-07-15T20:33:22Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121678
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 81-90).en_US
dc.description.abstractIn this thesis, I address the problem of predicting behavioral and cognitive metrics from highly heterogeneous datasets (e.g. genetic, clinical/patient history, neuropsychological, biohumoral, molecular) with missing or incomplete data, using Personalized Machine Learning (PML) [71, 72]. In specific, my thesis work focuses on exploring the application of personalized machine learning techniques to the problem of predicting behavioral and cognitive metrics given a pre-organized dataset containing multimodal subject data collected from the longitudinal Alzheimer's Disease Neuroimaging Initiative (ADNI) study. Thus, this thesis explores the impact of PML in the context of predicting the progression of Alzheimer's disease (AD) by predicting various cognitive, clinical, and behavioral metrics known to be indicative of AD diagnosis. To do this, we employ Gaussian Process (GP) Regression as a modeling framework. Using this framework, we design and implement two novel methods for personalized prediction of key cognitive metrics associated with the AD progression (e.g., ADAS-Cog13). Our experimental evaluations show that the proposed personalized model yields significant gains in performance over non-personalized ("one size fits all") approaches applied to the target estimation tasks using the ADNI database. The techniques proposed have the potential to advance and revolutionize disease treatment and clinical research in AD and other health-related domains. We also provide an extensive overview of methods that deal with missing data in ADNI dataset, being one of the main challenges when working with real-world data of AD.en_US
dc.description.statementofresponsibilityby Kelly Peterson.en_US
dc.format.extent90 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titlePersonalized Gaussian process-based machine learning models for forecasting Alzheimer's Disease progressionen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1102057007en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-07-15T20:33:21Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record