SuperTaco : Taco Tensor Algebra kernels on distributed systems using Legion
Author(s)
Shinde, Sachin Dilip.
Download1102057404-MIT.pdf (1.192Mb)
Alternative title
Taco Tensor Algebra kernels on distributed systems using Legion
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Saman Amarasinghe.
Terms of use
Metadata
Show full item recordAbstract
Tensor algebra is a powerful language for expressing computation on multidimensional data. While many tensor datasets are sparse, most tensor algebra libraries have limited support for handling sparsity. The Tensor Algebra Compiler (Taco) has introduced a taxonomy for sparse tensor formats that has allowed them to compile sparse tensor algebra expressions to performant C code, but they have not taken advantage of distributed systems. This work provides a code generation technique for creating Legion programs that distribute the computation of Taco tensor algebra kernels across distributed systems, and a scheduling language for controlling how this distributed computation is structured. This technique is implemented in the form of a command-line tool called SuperTaco. We perform a strong scaling analysis for the SpMV and TTM kernels under a row blocking distribution schedule, and find speedups of 9-10x when using 20 cores on a single node. For multi-node systems using 20 cores per node, SpMV achieves a 33.3x speedup at 160 cores and TTM achieves a 42.0x speedup at 140 cores.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019 Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 89-91).
Date issued
2019Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.