MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Local approximations of deep learning models for black-box adversarial attacks

Author(s)
Sun, Michael(Michael Z.)
Thumbnail
Download1102057729-MIT.pdf (1.363Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Aleksander Madry.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We study the problem of generating adversarial examples for image classifiers in the black-box setting (when the model is available only as an oracle). We unify two seemingly orthogonal and concurrent lines of work in black-box adversarial generation: query-based attacks and substitute models. In particular, we reinterpret adversarial transferability as a strong gradient prior. Based on this unification, we develop a method for integrating model-based priors into the generation of black-box attacks. The resulting algorithms significantly improve upon the current state-of-the-art in black-box adversarial attacks across a wide range of threat models.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 45-47).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/121687
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.