Show simple item record

dc.contributor.advisorJames R. Glass and Mitra Mohtarami.en_US
dc.contributor.authorXu, Brian(Brian W.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-07-15T20:34:26Z
dc.date.available2019-07-15T20:34:26Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121689
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 77-80).en_US
dc.description.abstractFactually incorrect claims on the web and in social media can cause considerable damage to individuals and societies by misleading them. As we enter an era where it is easier than ever to disseminate "fake news" and other dubious claims, automatic fact checking becomes an essential tool to help people discern fact from fiction. In this thesis, we focus on two main tasks: fact checking which involves classifying an input claim with respect to its veracity, and stance detection which involves determining the perspective of a document with respect to a claim. For the fact checking task, we present Bidirectional Long Short Term Memory (Bi-LSTM) and Convolutional Neural Network (CNN) based models and conduct our experiments on the LIAR dataset [Wang, 2017], a recently released fact checking task. Our model outperforms the state of the art baseline on this dataset. For the stance detection task, we present bag of words (BOW) and CNN based models in hierarchy schemes. These architectures are then supplemented with an adversarial domain adaptation technique, which helps the models overcome dataset size limitations. We test the performance of these models by using the Fake News Challenge (FNC) [Pomerleau and Rao, 2017], the Fact Extraction and VERification (FEVER) [Thorne et al., 2018], and the Stanford Natural Language Inference (SNLI) [Bowman et al., 2015] datasets. Our experiments yielded a model which has state of the art performance on FNC target data by using FEVER source data coupled with adversarial domain adaptation [Xu et al., 2018].en_US
dc.description.statementofresponsibilityby Brian Xu.en_US
dc.format.extent80 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleCombating fake news with adversarial domain adaptation and neural modelsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1102057862en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-07-15T20:34:22Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record