Show simple item record

dc.contributor.advisorDouglas P. Hart.en_US
dc.contributor.authorFischman, Jason Zachary.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2019-07-15T20:34:30Z
dc.date.available2019-07-15T20:34:30Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121690
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 127-130).en_US
dc.description.abstractVarious aluminum-water reactions were thermodynamically analyzed across a wide range of temperatures and pressures to determine the most favorable reaction under each condition. Results show that under most achievable temperatures and pressures the reaction will produce AlOOH, however at low temperatures and high pressures, this will transition to a reaction producing Al(OH)₃. This model was then corroborated experimentally using XRD and FTIR to identify the aluminum-water reaction products created at varying temperatures and pressures. A new Ga In eutectic-limited surface coating method was developed to produce effective, consistent, aluminum fuel. This coating method also allowed for the study of the effects of increased eutectic concentration on aluminum reaction yield. These reaction yield results showed a minimum threshold concentration of 1.9% eutectic was needed to create reactive fuel, and that adding concentrations beyond that would increase the reaction yield with diminishing returns. Using this aluminum technology, the world's first aluminum fueled car was made. A 10 kW power system fueled by an aluminum-water reaction was successfully integrated into a BMW i3 to replace its range extender and to power the vehicle. With a vision towards creating simpler power systems in the future, a liquid aluminum fuel was also developed. This fuel works by suspending 65% aluminum particles by mass into a mixture of mineral oil and fumed silica. This newly developed liquid fuel can be pumped easily, stay in suspension for months, and retains full levels of reaction completion. Finally, a joint hydrogen-steam IC engine concept was presented and analyzed. This engine utilizes both the thermal and hydrogen energy created by an aluminum-water reaction and shows ideal system efficiencies of as high as 33% while still operating at practical system pressures.en_US
dc.description.statementofresponsibilityby Jason Zachary Fischman.en_US
dc.format.extent130 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleThe development and characterization of aluminum fueled power systems and a liquid aluminum fuelen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1102320562en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2019-07-15T20:34:27Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record