Impact of reactor environment on quenching heat transfer of accident tolerant fuel cladding
Author(s)
Seshadri, Arunkumar.
Download1103919414-MIT.pdf (5.675Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Koroush Shirvan.
Terms of use
Metadata
Show full item recordAbstract
Development of accident tolerant fuels (ATF) for light water reactors (LWRs) came into focus for the nuclear engineering community after the accidents at Fukushima-Daiichi. The primary focus of the ATF program is to identify alternative fuel and cladding technologies that may provide enhanced safety, competitiveness, and economics. The new fuel design must also be compatible with present-day LWR design. For near-term applications, coatings on the nominal Zirconium-based cladding material and other metallic materials are being considered to improve the corrosion resistance and reduce the generation of hydrogen at high temperatures. Major ATF coating choices under consideration include chromium as a coating, iron-chromium-aluminum alloys (FeCrAl) as cladding and molybdenum as a coating, which have demonstrated better mechanical and oxidation behavior during the experimental testing. Thermal-fluids characteristics are pivotal for a robust testing of ATF concepts as the proposed candidates may have an entirely different thermal-hydraulic behavior when compared to Zircaloy-4. ATF coatings may display very different boiling characteristics as a result of different microstructures and surface characteristics. In the present work, transient boiling heat transfer during quenching of the candidate ATF claddings on vertical rodlets is studied experimentally. The candidate ATF material (chromium, FeCrAl, and molybdenum) are applied on Zircaloy-4 rodlets. The vertical solid rodlets are heated to temperatures up to 1000 °C and are quenched in a saturated pool of water at atmospheric pressure. The temperature variation during the quenching of rodlets was recorded insitu with synchronized visualization of boiling regimes over the test specimen using a high-speed video camera. The quench performance of the ATF coatings was analyzed based on the examination of various surface parameters such as wettability, roughness, emissivity and capillary wicking. In order to obtain a more realistic picture of the candidate performance during the emergency cooling reflood phase in a nuclear reactor, the coated rodlets are also oxidized in an autoclave before quenching. The performance of the candidate claddings is evaluated after oxidation and the surface characterized. It was observed from the post-test analysis that the surface characteristics and oxidation had a significant impact on the quench performance of ATF coatings, which varied between different coating materials. In order to better understand the thermal margins in a reactor specific environment, an analysis was performed on samples after exposing them to gamma rays. The gamma rays tend to change the surface wettability through a phenomenon called Radiation Induced Surface Activation. A Gammacell 220E irradiator that uses 12 cobalt-60 pencil sources, arranged axially in a sample chamber at MIT, was used to irradiated the samples. The results of water quenching and contact angle studies showed a higher Leidenfrost temperature and wettability in both samples exposed to gamma irradiation. The detailed microscopic analysis attributed the enhanced wettability to oxidation of the surface under gamma irradiation.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2018 Cataloged from student-submitted PDF version of thesis. Page 123 blank. Includes bibliographical references (pages 106-116).
Date issued
2018Department
Massachusetts Institute of Technology. Department of Nuclear Science and EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.