Show simple item record

dc.contributor.advisorMarc A. Baldo.en_US
dc.contributor.authorSiddiqui, Saima Afroz.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-07-17T20:58:14Z
dc.date.available2019-07-17T20:58:14Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121727
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractSpintronics promises intriguing device paradigms where electron spin is used as the information token instead of its charge counterpart. Spin transfer torque-magnetic random access memory (STT-MRAM) is considered one of the most mature nonvolatile memory technologies for next generation computers. Spin based devices show promises also for beyond-CMOS, in memory computing and neuromorphic accelerators. In the future cognitive era, nonvolatile memories hold the key to solve the bottleneck in the computational performance due to data shuttling between the processing and the memory units. The application of spintronic devices for these purposes requires versatile, scalable device design that is adaptable to emerging material physics. We design, model and experimentally demonstrate spin orbit torque induced magnetic domain wall devices as the building blocks (i.e. linear synaptic weight generator and the nonlinear activation function generator) for in-memory computing, in particular for artificial neural networks. Spin orbit torque driven magnetic tunnel junctions show great promise as energy efficient emerging nonvolatile logic and memory devices.en_US
dc.description.abstractIn addition to its energy efficiency, we take advantage of the spin orbit torque induced domain wall motion in magnetic nanowires to demonstrate the linear change in resistances of the synaptic devices. Modifying the spin-orbit torque from a heavy metal or utilizing the size dependent magnetoresistance of tunnel junctions, we also demonstrate a nonlinear activation function for thresholding signals (analog or digitized) between layers for deep learning. The analog modulation of resistances in these devices requires characterizing the resolution of the resistance.en_US
dc.description.abstractSince domain wall in magnetic wires is the nonvolatile data token for these devices, we study the spatial resolution of discrete magnetic domain wall positions in nanowires. The studies on domain wall is further extended to identify energy-efficient and dynamically robust superior magnetic material for ultra-fast and efficient devices for neuromorphic accelerators.en_US
dc.description.statementofresponsibilityby Saima Afroz Siddiqui.en_US
dc.format.extent175 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleMagnetic domain wall devices : from physics to system level applicationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1102049051en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-07-17T20:58:12Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record