MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Copa : practical delay-based congestion control for the internet

Author(s)
Arun, Venkat.
Thumbnail
Download1102049354-MIT.pdf (3.743Mb)
Alternative title
Practical delay-based congestion control for the internet
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Hari Balakrishnan.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis introduces Copa, an end-to-end congestion control algorithm that uses three ideas. First, it shows that a target rate equal to 1/([delta]d[subscript q]), where d[subscript q] is the (measured) queueing delay, optimizes a natural function of throughput and delay under a Markovian packet arrival model. Second, it adjusts its congestion window in the direction of this target rate, converging quickly to the correct fair rates even in the face of significant flow churn. These two ideas enable a group of Copa flows to maintain high utilization with low queuing delay. However, when the bottleneck is shared with loss-based congestion-controlled flows that fill up buffers, Copa, like other delay-sensitive schemes, achieves low throughput. To combat this problem, Copa uses a third idea: detect the presence of buffer-fillers by observing the delay evolution, and respond with additive-increase/multiplicative decrease on the [delta] parameter. Experimental results show that Copa outperforms Cubic (similar throughput, much lower delay, fairer with diverse RTTs), BBR and PCC (significantly fairer, lower delay), and co-exists well with Cubic unlike BBR and PCC. Copa is also robust to non-congestive loss and large bottleneck buffers, and outperforms other schemes on long-RTT paths.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 43-46).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/121732
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.