MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal trajectories for fast quantum harmonic transport

Author(s)
Buercklin, Samuel Adam.
Thumbnail
Download1102049640-MIT.pdf (6.425Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Isaac L. Chuang.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The transport of atomic ions trapped within a harmonic potential arises necessarily in the course of building a trapped ion quantum computer. We may define this problem in terms of a differential equation and its corresponding boundary conditions to satisfy which are sufficient to guarantee the motional quantum state of the ion is unaltered. However, the solution space to this problem is uncountably large, and the various solutions differ in many qualitative and quantitative aspects. We present an easily-computed functional of transport trajectories with intuitively interpretable terms which may be used to compare solutions to the quantum harmonic transport problem, but does not require an expensive quantum-mechanical simulation of the ion dynamics. Furthermore, we prove the convexity of this cost function under easily satisfied conditions in a Fourier Series parameterization of the problem. We then numerically optimize the cost function to discover optimal trajectories for the quantum harmonic transport problem.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 85-88).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/121733
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.