Show simple item record

dc.contributor.advisorTomasz Wierzbicki and Dirk Mohr.en_US
dc.contributor.authorBonatti, Colin.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2019-07-17T21:02:12Z
dc.date.available2019-07-17T21:02:12Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121763
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 179-185).en_US
dc.description.abstractOpen-cell cellular solids are porous structures with a large variety of applications, from energy absorption to medical engineering. In an attempt to identify isotropic configurations with high low and large strain mechanical properties, detailed numerical simulations are conducted on a wide range of mesostructures of cubic symmetry. Results are partially validated through uniaxial compression of specimens made of 316L stainless steel via selective laser melting. In a first study the large deformation responses of four different mesostructures of relative density 20% are compared: an octet truss-lattice, tube-lattice, a sphere assembly and a tube/sphere hybrid. It is concluded that periodic shell structures provide superior strength and energy absorption capacity for the same weight, as compared to truss-lattices.en_US
dc.description.abstractAnother conclusion is that to avoid concentrations of plastic strains that are detrimental to the overall energy absorption of the structure, it is best to avoid peaks in curvature. Based on these conclusions, a shell-lattice is developed that resembles a smoothened Triply Periodic Minimal Surface of FCC symmetry. Its properties are compared to those of the octet-truss for a wide range of relative densities, revealing the shell-lattice as superior to the octet-truss in almost all cases. The FCC shell-lattice is then compared to its BCC and SC equivalents. It is found that the structures all present high anisotropic properties. For a given structure, directional difference factors of up to 4.1 in uniaxial stiffness, 2 in yield strength and 1.8 in specific energy absorption are observed. However the directional averages of their properties are very similar.en_US
dc.description.abstractIrrespective of the specific type of cubic symmetry, the shell-lattices are remarkably stiff, strong and energy-specific type of cubic symmetry, the shell-lattices are remarkably stiff, strong and energy-absorbing, particularly at relative densities above 0.1. To address the problem of anisotropy, novel families of shell-lattices that contain the previous examples are proposed. Design maps are established and reveal that the elastic anisotropy of shell-lattices can be conveniently tailored. As a result, isotropic topologies are identified. The elastically-isotropic shell-lattices feature similar overall performance that their TPMS-like counterparts as well as a significantly reduced plastic anisotropy. The structures obtained are believed to be the best performing open-cell topologies to date.en_US
dc.description.sponsorshipFinancially supported by the MIT Fracture Consortium and the Swiss National Foundationen_US
dc.description.statementofresponsibilityby Colin Bonatti.en_US
dc.format.extent185 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDesign and large deformation response of additively-manufactured shell-latticesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1102057782en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2019-07-17T21:02:09Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record