Show simple item record

dc.contributor.advisorAdam P. Willard.en_US
dc.contributor.authorLee, Chee Kong,Ph. D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.date.accessioned2019-07-18T20:28:32Z
dc.date.available2019-07-18T20:28:32Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121782
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 105-116).en_US
dc.description.abstractOrganic semiconductors are carbon-based semiconductors with number of unique benefits over traditional semiconductors such as low production costs, versatile synthesis processes, and high portability. Unlike traditional crystalline semiconductors that exhibit high level of homogeneity, organic semiconductors are spatially and temporally heterogeneous due to the weak van der Waals intermolecular forces. In this thesis we utilize computational and theoretical methods to investigate how this heterogeneity affects the electronic properties in organic semiconductors. In particular, we focus on two microscopic processes fundamental to the performance of organic semiconductors: the transport of Frenkel exciton and dissociation of charge-transfer (CT) exciton. Frenkel excitons are tightly bound electron-hole pairs created upon photo-excitation of molecules and they carry the excess energy imparted by photons.en_US
dc.description.abstractWe employ theoretical approach that combines molecular dynamics and semi-empirical electronic structure calculations to reveal the effects of molecular disorder on Frenkel exciton transport in oligothiophene-based molecular semiconductors. Using this approach, we find that the magnitude and details of molecular disorder (i.e. spatial and temporal correlations) could have huge impact on exciton transport in this class of materials. CT excitons are electron-hole pairs partially separated across the donor-acceptor interface. To generate free charges, the oppositely charged electron and hole must overcome an electrostatic binding energy before they undergo ground state recombination. We explore the CT exciton dissociate mechanism and magnetic field effects through a model of quantum spin dynamics combined with a stochastic coarse-grained model of charge transport.en_US
dc.description.abstractWe demonstrate that simulations carried out on our model are capable of reproducing experimental results as well as generating theoretical predictions related to the efficiency of organic electronic materials. Next, we consider the effect of disorder in electronic energy levels on dissociation yield and demonstrate that it is maximized with a finite amount of disorder as a result of non-equilibrium effect.en_US
dc.description.statementofresponsibilityby Chee Kong Lee.en_US
dc.format.extent116 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleSimulating exciton dynamics in organic semiconductorsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.identifier.oclc1103440185en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Chemistryen_US
dspace.imported2019-07-18T20:28:29Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentChemen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record