Show simple item record

dc.contributor.advisorRichard D. Braatz and J. Christopher Love.en_US
dc.contributor.authorMozdzierz, Nicholas J.(Nicholas Joseph)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemical Engineering.en_US
dc.date.accessioned2019-07-18T20:32:38Z
dc.date.available2019-07-18T20:32:38Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121817
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2018en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 327-353).en_US
dc.description.abstractThe existing biopharmaceutical manufacturing paradigm is poorly suited to produce biologic drugs on demand at a point-of-care. Generally, commercial-scale manufacturing using fed-batch cultivation and fixed infrastructure is concentrated in developed nations and results in process cycle times of weeks or months. Coupled with the complex logistical challenges associated with continuous 'plant-to-patient' cold-chains, the geographically biased nature of therapeutic protein production today can limit access to biologic drugs in developing areas of the world. These same logistical hurdles can also hamper the efficient distribution of life-saving protein therapeutics following crises in developed nations. Compounding these issues is the fact that lead times between bioreactor inoculation and patient dosing typically range from 6 to 12 months due to processing and regulatory constraints.en_US
dc.description.abstractAs such, there is an opportunity to create technologies capable of rapidly generating biopharmaceuticals in emergency situations and remote healthcare settings. A platform that couples modular flow-through bioreactors and purification systems with real-time feedback control has the potential to bridge this gap if developed in parallel with appropriate expression hosts. To this end, we first developed a state-of-the-art microfluidic perfusion process that supported sustained secretion of heterologous proteins from the yeast Komagataella phaffi. Using palm-sized bioreactors with a 1 mL cultivation volume, we showed that 1 - 10 adult doses worth of hGH or IFN[alpha]-2b could be manufactured in under 24 hours. Next, we reengineered an array of 1 L-scale stirred-tank bioreactors to operate under continuous perfusion conditions and integrate with custom-built reconfigurable chromatography systems.en_US
dc.description.abstractLeveraging controllers designed in-house, we demonstrated that this system was capable of meeting the metabolic demands of high-density cultures of K. phaffi and preventing perfusion filter fouling. We further showed the production of high-quality hGH and IFN[alpha]-2b via the direct transfer of cell-free perfused supernatant onto a chromatography system, and extended these results to the automated expression and purification of over 400 adult doses of hGH in under one week. Finally, we designed and built a scalable, tubular crystallizer that leverages continuous slug-flow, directed ultrasonic irradiation, modular counter-current heat exchangers, and model-predictive control to tune the crystal size distributions of small-molecules and proteins alike.en_US
dc.description.statementofresponsibilityby Nicholas J. Mozdzierz.en_US
dc.format.extent353 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemical Engineering.en_US
dc.titleDeveloping scalable and modular technologies for continuous biopharmaceutical productionen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.identifier.oclc1103713261en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Chemical Engineeringen_US
dspace.imported2019-07-18T20:32:33Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentChemEngen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record