MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using semidefinite programming to bound distributions in chemical engineering systems

Author(s)
Dowdy, Garrett Ryan.
Thumbnail
Download1103917704-MIT.pdf (22.55Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemical Engineering.
Advisor
Paul I. Barton.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Distributions appear in many forms in models of chemical engineering systems. Such distributions account for microscopic variability in the system while simultaneously explaining its macroscopic properties. These macroscopic properties are often of practical engineering interest. Thus, it is valuable to be able to characterize the underlying distributions that affect them. Recently, in the mathematical programming literature, it was shown that it is possible to optimize a linear objective over a set of distributions by solving a specific type of convex optimization problem called a semidefinite program (SDP). From a theoretical perspective, SDPs can be solved efficiently. Furthermore, there exist several off-the-shelf codes designed specifically to solve SDPs. This thesis demonstrates how these theoretical and practical advancements can be applied to chemical engineering problems featuring distributions. Broadly speaking, it shows how, given limited information about a distribution, one can use SDPs to calculate mathematically rigorous bounds on various descriptions of that distribution. Two specific types of distributions are examined: particle size distributions and probability distributions arising in stochastic chemical kinetics, with the majority of the thesis covering the latter topic. The SDP-based bounding method described herein provides a rigorous solution to the long-standing "moment closure problem" arising in stochastic chemical kinetics. Moreover, it provides a means of analyzing of stochastic chemical kinetic systems which cannot be effectively analyzed using existing methods. The bounding method does have some limitations, and we present several refinements of the method aimed at overcoming these limitations. Finally, we discuss several ideas through which the bounding method may be further improved, which have not yet been explored.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 329-334).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/121820
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.