MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topics in non-convex optimization and learning

Author(s)
Zhang, Hongyi,Ph. D.Massachusetts Institute of Technology.
Thumbnail
Download1108619914-MIT.pdf (16.97Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences.
Advisor
Suvrit Sra.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Non-convex optimization and learning play an important role in data science and machine learning, yet so far they still elude our understanding in many aspects. In this thesis, I study two important aspects of non-convex optimization and learning: Riemannian optimization and deep neural networks. In the first part, I develop iteration complexity analysis for Riemannian optimization, i.e., optimization problems defined on Riemannian manifolds. Through bounding the distortion introduced by the metric curvature, iteration complexity of Riemannian (stochastic) gradient descent methods is derived. I also show that some fast first-order methods in Euclidean space, such as Nesterov's accelerated gradient descent (AGD) and stochastic variance reduced gradient (SVRG), have Riemannian counterparts that are also fast under certain conditions. In the second part, I challenge two common practices in deep learning, namely empirical risk minimization (ERM) and normalization. Specifically, I show (1) training on convex combinations of samples improves model robustness and generalization, and (2) a good initialization is sufficient for training deep residual networks without normalization. The method in (1), called mixup, is motivated by a data-dependent Lipschitzness regularization of the network. The method in (2), called Zerolnit, makes the network update scale invariant to its depth at initialization.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 165-186).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/121830
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Brain and Cognitive Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.