Show simple item record

dc.contributor.advisorKrystyn J. Van Vliet.en_US
dc.contributor.authorRennerfeldt, Deena Antoinette.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biological Engineering.en_US
dc.date.accessioned2019-07-22T19:32:13Z
dc.date.available2019-07-22T19:32:13Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121873
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractBone marrow stromal cells (BMSCs), a subset of which are considered mesenchymal stem cells (MSCs), have been used in over 600 clinical trials for indications ranging anywhere from autism to liver cirrhosis to diabetes. They have cited enthusiasm in the cell therapy community not only for their demonstrated differentiation potential toward several lineages, but also due to the anti-inflammatory and immunomodulatory effects of their secretome. However, the necessary in vitro expansion of BMSCs renders cell populations functionally diverse, and understanding of what drives heterogeneity onset - as well as which distinct phenotypes elicit therapeutic responses of interest - remains an open challenge. This lack of characterization confounds studies focused on basic cell behavior as well as translational applications, and U.S. Food & Drug Administration approval for BMSC therapies has yet to be achieved for any of the several dozen indications explored to date.en_US
dc.description.abstractThis thesis describes our work toward understanding the extent, mechanisms, and possible mitigation strategies regarding heterogeneity in BMSC cultures, by exploring the biophysical and transcriptomic profiles of single cells. We report our findings that cell generation most succinctly dictates the combined biophysical properties studied and that at the transcriptome level four distinct functional phenotypes exist. We further explore mechanisms by which heterogeneity emerges, demonstrating that cellular senescence and asynchronous proliferation kinetics leads to a distribution of biophysical properties and that at fixed time points cells are somewhere along a gene expression cascade trajectory from one functional state to another.en_US
dc.description.abstractWe also report our discovery of novel surface marker candidates for enrichment of specific phenotypes and demonstrate that these discrete subpopulations differentially express genes implicated in the distinct, yet established therapeutic applications of immunosuppression, neurogeneration, and wound healing. These findings were enabled by our technological advancements that include complex time lapse imaging protocols, innovative assays for probing of label-free cell behavior, establishment of best practices for generating single BMSC transcriptome libraries, and robust analytical pipelines for time lapse imaging and single-cell RNA sequencing datasets. Collectively, these tools and analyses provide a strong foundation toward leveraging the discrete functional roles of this diverse collection of cells for both well-designed basic research studies and improved therapeutic efficacy.en_US
dc.description.statementofresponsibilityby Deena Antoinette Rennerfeldt.en_US
dc.format.extent627 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titleToward understanding and mitigating heterogeneity in bone marrow stromal cell cultures for improved therapeutic efficacyen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.identifier.oclc1102635527en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Biological Engineeringen_US
dspace.imported2019-07-22T19:32:11Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentBioEngen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record