MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Biology
  • Biology - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Biology
  • Biology - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regulation of DNA replication and the replication initiator, DnaA, in Bacillus subtilis

Author(s)
Anderson, Mary E.,Ph. D.(Mary Elizabeth)Massachusetts Institute of Technology.
Thumbnail
Download1102636605-MIT.pdf (8.163Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
Alan D. Grossman.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
DNA replication is a highly regulated process across all organisms. Improper regulation of DNA replication can be detrimental. I identified an overinitiating, conditional synthetic lethal mutant of Bacillus subtilis. I isolated suppressors of this mutant and uncovered novel genes associated with DNA replication. These suppressors acted both at the steps of initiation and elongation to overcome the detrimental replication initiation of the synthetic lethal [delta]yabA dnaA 1 mutant. One class of suppressors decreased levels of the replicative helicase, DnaC. I showed that decreased levels of helicase are sufficient to limit replication initiation under fast growth conditions. I also explored the regulation of DnaA as a transcription factor. The replication initiation inhibitor, YabA, binds to DnaA and prevents its cooperative binding at the origin. In addition to its role in replication initiation, DnaA also directly regulates expression of several genes. YabA has been shown to inhibit DnaA binding at several promoters but its effect on DnaA-mediated gene expression is unclear. I found that YabA inhibits sda activation by DnaA but does not significantly affect repression of ywlC by DnaA. Lastly, I showed that YabA appears to stimulate autoregulation of dnaA. This preliminary data illustrates a role for YabA regulation in DnaA-mediated gene expression.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2019
 
Cataloged from PDF version of thesis. "February 2019."
 
Includes bibliographical references (pages 118-128).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/121876
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Biology - Ph.D. / Sc.D.
  • Biology - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.