Show simple item record

dc.contributor.advisorE. Eric Adams.en_US
dc.contributor.authorShrivastava, Ishita.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2019-07-22T19:34:04Z
dc.date.available2019-07-22T19:34:04Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/121883
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractSubmerged outfalls consisting of multiple, closely spaced jets are often used to discharge industrial effluents in coastal waterbodies. Examples of such effluents include heated water from thermal power plants, treated wastewater effluent from sewage treatment plants, and reject brine from desalination plants. At locations with shallow water depth, the interaction between adjacent jets is enhanced and can affect mixing. The mixing of submerged outfalls in shallow water is studied in this thesis with particular emphasis on discharge of dense treated brine from desalination plants. Treatment options for brine involve blending it with less saline effluents or its concentration, and can have significant effect on the design of outfall and its mixing. The effect of shallow water depth on dilution of submerged outfalls is determined first for quiescent conditions, and a unified theory is developed for single and multiple jets discharging in shallow water.en_US
dc.description.abstractThe effect of shallowness is shown to be characterized by a non-dimensional parameter, which depends on the receiving water depth and the effluent momentum and buoyancy fluxes. The effect of brine treatment processes, which affect both discharge momentum and buoyancy, on the dilution of various contaminants is determined next. The effect of brine treatment on outfall design is also explored, and optimum outfall design variables are calculated for a range of conditions. In the presence of a crossflow, the mixing dynamics of multiple port outfalls are quite different, and can give rise to complex jet interactions and even reversing flow close to the upstream jets. Laboratory experiments, in which discharge and ambient parameters are varied, have led to an improved empirical expression for dilution. In addition to the strength of crossflow, outfall length and spacing of jets are also found to significantly affect dilution.en_US
dc.description.abstractA numerical model, capable of modeling the discharge of multiple jets in a crossflow, is developed and shows significant improvement over existing models.en_US
dc.description.statementofresponsibilityby Ishita Shrivastava.en_US
dc.format.extent183 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleShallow water outfalls for brine disposal from desalination plantsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.identifier.oclc1102675219en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Civil and Environmental Engineeringen_US
dspace.imported2019-07-22T19:34:00Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentCivEngen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record