MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Making computer vision Methods accessible for cell classification

Author(s)
Hung, Jane Yen.
Thumbnail
Download1103313692-MIT.pdf (11.57Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemical Engineering.
Advisor
Anne E. Carpenter and J. Christopher Love.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Computers are better than ever at extracting information from visual media like images, which are especially powerful in biology. The field of computer vision tries to take advantage of this fact and use computational algorithms to analyze image data and gain higher level understanding. Recent advances in machine learning such as deep learning based architectures have greatly expanded their potential. However, biologists often lack the training or means to use new software or algorithms, leading to slower or less complete results. This thesis focuses on developing different computer vision methods and software implementations for biological applications that are both easy to use and customizable. The first application is cardiomyocytes, which contain sarcomeric qualities that can be quantified with spectral analysis. Next, CellProfiler Analyst, an updated software application for interactive machine learning classification and feature analysis is described along with its use for classifying imaging flow cytometry data. Further software related advances include the first demonstration of a deep learning based model designed to classify biological images with a user-friendly interface. Finally, blood smear images of malaria-infected blood are examined using traditional machine learning based segmentation pipelines and using novel deep learning based object detection models. To entice further development of these types of object detection models, a software package for simpler object detection training and testing called Keras R-CNN is presented. The applications investigated here show how computer vision can be a viable option for biologists who want to take advantage of their image data.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2018
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 107-113).
 
Date issued
2018
URI
https://hdl.handle.net/1721.1/121894
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.