Show simple item record

dc.contributor.advisorJennifer Morris and Karen Tapia-Ahumada.en_US
dc.contributor.authorGadzanku, Sika.en_US
dc.contributor.otherMassachusetts Institute of Technology. Institute for Data, Systems, and Society.en_US
dc.contributor.otherTechnology and Policy Program.en_US
dc.coverage.spatialf-gh---en_US
dc.date.accessioned2019-09-16T18:17:25Z
dc.date.available2019-09-16T18:17:25Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122096
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 157-166).en_US
dc.description.abstractGhana, a West African nation of 28 million people, provides an interesting case study on the interaction between power supply and politics in emerging economies. From 2012-2016, due to security of supply issues around hydro and fuel supplies, Ghana experienced the worst power crisis in its history with regular rolling blackouts. Rural and low-income urban areas and businesses were especially affected, and public discontent was palpable. The government's response was a reactive approach to generation expansion planning, focused on increasing supply. Power generation was opened up to the private sector and emergency power plants were procured. 93 percent of capacity installed during this post-crisis period was thermal generation, which increased dependence on natural gas and crude oil. Overall, this power crisis highlighted the cost of overlooking reliability and an undiversified generation mix.en_US
dc.description.abstractI adapted a modeling framework to study Ghana's power generation system and I use a bottom-up capacity expansion and economic dispatch model to explore generation expansion pathways in the country under different settings, with the goal of providing insights into Ghana's capacity expansion decisions and identifying strategies that can help ensure better reliability and resiliency. Secondly, I use qualitative methods to evaluate Ghana's electricity infrastructure project financing framework to discuss how project financing shapes technology choices. I then explore potential policy and legal instruments that could support more robust systems planning in Ghana's electricity generation sector. Results reveal that a future power crisis is very likely given the high sensitivity of system reliability and resilience to natural gas and crude oil supply, global energy prices and transmission constraints.en_US
dc.description.abstractStrategies that could help avoid a future crisis include diversifying the generation mix, adding flexible generation (such as pumped hydro) to the mix, increasing transmission, and increasing the stability of fuel supply. This requires a holistic and coordinated approach to electricity planning between financial, technical, technological and political actors in the power generation sector.en_US
dc.description.statementofresponsibilityby Sika Gadzanku.en_US
dc.format.extent166 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectInstitute for Data, Systems, and Society.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleEvaluating electricity generation expansion planning in Ghanaen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentTechnology and Policy Programen_US
dc.identifier.oclc1117774571en_US
dc.description.collectionS.M.inTechnologyandPolicy Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Societyen_US
dspace.imported2019-09-16T18:17:23Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentESDen_US
mit.thesis.departmentIDSSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record