Show simple item record

dc.contributor.advisorAlexander Slocum.en_US
dc.contributor.authorPeng, Valerie.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2019-09-16T20:57:55Z
dc.date.available2019-09-16T20:57:55Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122105
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 177-187).en_US
dc.description.abstractThis thesis designs and evaluates systems to utilize two problematic biomass sources, hurricane debris and invasive water hyacinth, and turn costly cleanup efforts into opportunities for biofuel conversion systems. A novel solution is proposed for each biomass source and techno-economic models accounting for economic, energy, and carbon costs are used to evaluate different options for utilization. Hurricane debris is a feedstock that gets generated in vast quantities in an unpredictable manner, thus its main challenge is its supply chain. We propose a 30MW barge-mounted biofuel conversion system, which travels to hurricane-hit ports and converts debris into biofuels. For a 30MW plant, the break-even per-gallon revenue for profitability was found to be $5.28 per gallon of jet fuel for Fischer-Tropsch synthesis, $0.88 per gallon of heating oil for pyrolysis, and $1.07 per gallon of ethanol for fermentation.en_US
dc.description.abstractUsing May 2019 US national fuel prices, the pyrolysis and fermentation plants were found to operate at a profit of $363.87 and $166.40 per dry ton of consumed hurricane debris respectively. A supply chain model was also created to calculate debris transport costs and evaluate the economic benefits of chipping debris directly in the field, which was found to be 24% more efficient than status quo stationary chipping operations. Water hyacinth is generated predictably and in huge quantities; however, the weight of water hyacinth is up to 95% water and it is thus inefficient to work with. Thus, we propose a novel roller-crusher harvester which grabs, crushes, and directly bags aquatic plants into digesters in-situ on the water. We find that an anaerobic digestion system with the proposed mechanical harvesting system could make a profit of $5.81 per ton of hyacinth, turning a costly problem into an economic opportunity.en_US
dc.description.abstractHardware designs, prototypes, and on-water tests then show the viability of the roller-conditioner as a boat-mounted in-situ harvester-crusher. Ultimately, this work shows that careful design and evaluation of utilization systems could turn government aid and charity spent every year on debris and waterway cleanup into a profitable investment.en_US
dc.description.statementofresponsibilityby Valerie Peng.en_US
dc.format.extent187 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDesign and evaluation of biomass utilization systemsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1119389109en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2019-09-16T20:57:53Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record