Smart water network management with in-pipe leak detection robots
Author(s)
Mittmann, Elizabeth(Elizabeth R.)
Download1119389479-MIT.pdf (10.67Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Kamal Youcef-Toumi.
Terms of use
Metadata
Show full item recordAbstract
In this thesis, I created methods and designs to implement smarter, more autonomous water distribution networks (WDNs) and also improved the robots which will travel within the WDN's pipes to better differentiate pipe leaks from bumps in the pipes. Starting from the unit of the in-pipe leak detection robot, I investigated ways to make its soft leak sensors able to differentiate between pulling (due to leaks) and bending (due to bumps), and showed how a new design of adding fabric to the soft sensor allows the sensors to differentiate bending from pulling. Zooming out to the larger picture I looked at feasible ways these robots could be used throughout a cities' WDN, and created cost analyzes to compare futuristic methods of WDN management with current methods of district metered areas (DMAs). However, going from our current state of minimally instrumented pipes, to pipes with many valves to direct in-pipe inspection robots is a big leap, and thus I also created a method to help evaluate the cost trade-off of valve placement and the optimal spots for adding valves in the case where it was ideal to place valves on only some of the intersections of the WDN..
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019 Cataloged from PDF version of thesis. Includes bibliographical references (pages 85-87).
Date issued
2019Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.